日韩欧美成人午夜,天天色综合成人网,岛国精品在线,噜噜噜噜噜在线视频,高清在线观看av,成人毛片免费,成人黄色小视频,亚洲免费高清,国产精品每日更新,91精品国产综合久久精品性色

芬蘭Kibron專注表面張力儀測(cè)量技術(shù),快速精準(zhǔn)測(cè)量動(dòng)靜態(tài)表面張力

熱線:021-66110810,66110819,66110690,13564362870 Email: info@vizai.cn

合作客戶/

拜耳公司.jpg

拜耳公司

同濟(jì)大學(xué)

同濟(jì)大學(xué)

聯(lián)合大學(xué).jpg

聯(lián)合大學(xué)

寶潔公司

美國(guó)保潔

強(qiáng)生=

美國(guó)強(qiáng)生

瑞士羅氏

瑞士羅氏

當(dāng)前位置首頁(yè) > 新聞中心

采用殼聚糖-三聚磷酸酯-百里香納米顆粒經(jīng)熱噴墨打印而成的新型活性包裝材料——結(jié)論、致謝!

來(lái)源:Unisense 瀏覽 1993 次 發(fā)布時(shí)間:2021-09-13


結(jié)論


與對(duì)照薄膜相比,印刷薄膜表現(xiàn)出改善的水蒸氣阻隔性能。 Qo 印刷薄膜比混合薄膜更有效。 與對(duì)照薄膜相比,印刷的 Qo 薄膜的斷裂伸長(zhǎng)率降低,拉伸強(qiáng)度增加,而印刷的混合薄膜的伸長(zhǎng)率和拉伸強(qiáng)度均增加。


Th 納米封裝印刷的效率取決于印刷層數(shù)、接觸角、添加到分散體中的甘油量和薄膜類型。 兩種薄膜中 Th 的傳遞都在 8 天時(shí)完成,表明這些薄膜是傳遞活性化合物的良好平臺(tái)。 然而,NQoThs 在薄膜中的分布表現(xiàn)出不同的釋放曲線; Qo 薄膜在第一階段表現(xiàn)出突釋,而混合薄膜表現(xiàn)出較慢的釋放。


與使用 NQos 印刷的薄膜相比,使用 NQoThs 印刷的薄膜對(duì)革蘭氏陽(yáng)性菌(L. innocua 和 S. aureus)和革蘭氏陰性菌(S. typhimurium、E. aerogenes、P. aeruginosa 和 E. coli)表現(xiàn)出更高的 AM和對(duì)照膜。 革蘭氏陰性菌(鼠傷寒沙門氏菌、產(chǎn)氣大腸桿菌和大腸桿菌)獲得了最佳結(jié)果。


這些發(fā)現(xiàn)表明,可印刷納米技術(shù)的使用可以改善由可再生生物聚合物制備的薄膜的功能,因?yàn)檫@些薄膜可以提高水蒸氣阻隔性,作為傳遞活性化合物的良好平臺(tái),并增加抗菌活性。 因此,這些薄膜可能有助于開(kāi)發(fā)新的食品包裝材料。


致謝


作者要感謝 INNOVA-CORFO N度 12IDL2-13621 的財(cái)政支持。 我們感謝智利圣地亞哥大學(xué)的 Fernando Osorio 博士和 Ricardo Andrade 博士對(duì)接觸角測(cè)量的幫助。 我們還要感謝 Conicyt 授予 Nelson Caro 的博士獎(jiǎng)學(xué)金。


參考



Abdollahi, M., Rezaei, M., & Farzi, G. (2012). A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. Journal of Food Engineering, 111(2), 343e350.


Abugoch, L. (2009). Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. In Advances in food and nutrition (Vol. 58, pp. 1e31). Elsevier INC.


Abugoch, L., Romero, N., Tapia, C., Rivera, M., & Silva, J. (2008). Study of some physicochemical and functional properties of quinoa (Chenopodium Quinoa Willd.) protein isolates. Journal of Agricultural and Food Chemistry, 56(12), 4745e4750.


Abugoch, L., Tapia, C., Villaman, M., Yazdani-Pedraman, M., & Díaz-Dosque, M. (2011). Characterization of quinoa protein chitosan blend edible films. Food Hydrocolloids, 25, 879e886.


Adame, D., & Beall, G. W. (2009). Direct measurement of the constrained polymer region in polyamide/clay nanocomposites and the implications for gas diffusion. Applied Clay Science, 42, 545e552.


Akbari, B., Pirhadi, M., & Zandrahim, M. (2011). Particle size characterization of nanoparticles: a practical approach. Iranian Jorurnal of Material Science and Engineering, 8(2), 48e56.


Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493e496.


Berger, J., Reist, M., Mayer, J., Felt, O., Peppas, N., & Gurny, R. (2004). Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 57, 19e34.


Bharadwaj, R. K. (2001). Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules, 34(26), 9189e9192.


Bouten, P., Zonjee, M., Bender, J., Yauw, S., van Goor, H., van Hest, J., et al. (2014). The chemistry of tissue adhesive materials. Progress in Polymer Science, 39(7), 1375e1405.


Bradford, M. (1976). Rapid and sensitive method for the quantitation of micrograms quantities of protein utilizing the principle of protein-dye binding. Anaytical Biochemistry, 72, 248e254.


Brandsch, J., Mercea, P., Rüter, M., Tosa, V., & Piringer, O. (2002). Migration modeling as a tool for quality assurance of food packaging. Food Additives & Contaminants, 19, 22e41.


Buanz, A., Saunders, M., Basit, A., & Gaisford, S. (2011). Preparation of personalizeddose salbutamol sulphate oral films with thermal ink-jet printing. Pharmaceutical Research, 28(10), 2386e2392.


Butler, B., Vergano, P., Testin, R., Bunn, J., & Wiles, J. (1996). Mechanical and barrier properties of edible chitosan films as affected by composition and storage. Journal of Food Science, 61(5), 953e955.


Calvo, P., Remu~nan-Lopez, C., Vila-Jato, J. L., & Alonso, M. J. (1997). Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. Journal of Applied Polymer Science, 63, 125e132.


Caner, C., Vergano, P., & Wiles, J. (1998). Chitosan films: mechanical and permeation properties as affected by acid, plasticizer, and storage. Journal of Food Science, 63(6), 1049e1053.


Clapper, J. D., Pearce, M. E., Guymon, C. A., & Salem, A. K. (2008). Biotinylated biodegradable nanotemplated hydrogel networks for cell interactive applications. Biomacromolecules, 9(4), 1188e1194.


Colla, E., Sobral, P., & Menegalli, F. (2006). Amaranthus cruentus flour edible films: influence of stearic acid addition, plasticizer concentration, and emulsion stirring speed on water vapor permeability and mechanical properties.


Journal of Agricultural and Food Chemistry, 54, 6645e6653. Cortez, M., Martínez, A., Ezquerra, J., Graciano, A., Rodriguez, F., & Castillo, M. (2010).


Chitosan composite films: thermal, structural, mechanical and antifungal properties. Carbohydrate Polymers, 82, 305e315. Davis, T., Yezek, L., Pinheiro, J., & van Leeuwen, H. (2005). Measurement of Donnan potentials in gels by in situ microelectrode voltammetry. Journal of Electroanalytical Chemistry, 584(2), 100e109.


De Britto, D., & Assis, O. B. G. (2012). Chemical, biochemical, and microbiological aspects of chitosan quaternary salt as active coating on sliced apples. Revista Espa~nola de Ciencia Y Tecnología de Alimento, 32(3), 599e605.


De Moura, M., Aouada, F., Avena-Bustillos, R., McHugh, T., Krochta, J., & Mattoso, L. (2009). Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. Journal of Food Engineering, 92(4), 448e453.


Di Pierro, P., Sorrentino, A., Mariniello, L., Giosafatto, C., & Porta, R. (2011). Chitosan/ whey protein film as active coating to extend Ricotta cheese shelf-life. Lebensmittel- Wissenschaft Und-Technologie, 44(10), 2324e2327.


Du, W.-L., Niu, S.-S., Xu, Y.-L., Xu, Z.-R., & Fan, C.-L. (2009). Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydrate Polymers, 75(3), 385e389.


Dutta, P., Tripathi, S., Mehrotra, G., & Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 114(4), 1173e1182.


Ely, D., Garcia, R. E., & Thommes, M. (2014). OstwaldeFreundlich diffusion-limited dissolution kinetics of nanoparticles. Powder Technology, 257, 120e123. Falguera, V., Quintero, J., Jimenez, A., Mu~noz, J., & Ibarz, A. (2011). Edible films and coatings: structures, active functions and trends in their use. Trends in Food Science & Technology, 22, 292e303. Fan, J.-M., Ma,W., Liu, G.-Q., Yin, S.-W., Tang, C.-H., & Yang, X.-Q. (2014). Preparation and characterization of kidney bean protein isolate (KPI)-chitosan (CH) composite films prepared by ultrasonic pretreatment. Food Hydrocolloid, 36, 60e69. Fernandes, S., Freire, C., Silvestre, A., Neto, C., Gandini, A., Berglund, L., et al. (2010). Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydrate Polymers, 81, 394e401. Ferreira, C., Nunes, C., Delgadillo, I., & Lopes-da-Silva, J. A. (2009). Characterization of chitosan-whey protein films at acid pH. Food Research International, 47(7), 807e813. Freudenberg, U., Zimmermann, R., Schmidt, K., Holger Behrens, S., & Werner, C. (2007). Charging and swelling of cellulose films. Journal of Colloid and Interface Science, 309, 360e365. de Gans, B.-J., Duineveld, P., & Schubert, U. (2004). Inkjet printing of polymers: state of the art and future developments. Advanced Materials, 16(3), 203e213. Garsuch, V., & Breitkreutz, J. (2010). Comparative investigations on different polymers for the preparation of fast-dissolving oral films. Journal of Pharmacology and Pharmacotherapeutics, 62(4), 539e545. Genina, N., Janben, M., Breitenbach, A., Breitkreutz, J., & Sandler, N. (2013). Evaluation of different substrates for inkjet printing of rasagiline mesylate. European Journal of Pharmaceutics and Biopharmaceutics, 85(3), 1075e1083. Ghanbarzadeh, B., & Almasi, H. (2011). Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid. International Journal of Biological Macromolecules, 48, 44e49. Ghasemnezhad, M., Zareh, S., Rassa, M., & Sajedi, R. H. (2013). Effect of chitosan coating on maintenance of aril quality, microbial population and PPO activity of pomegranate (Punica granatum L. cv. Tarom) at cold storage temperature. Journal of the Science of Food and Agriculture, 93(2), 368e374. Goy, R. C., de Britto, D., & Assis, O. B. G. (2009). A review of the antimicrobial activity of chitosan. Polímeros: Ci^encia e Tecnologia, 19(3), 241e247. Grob, K. (2008). The future of simulants in compliance testing regarding the migration from food contact materials into food. Food Control, 19(3), 263e268. Guarda, A., Rubilar, J., Miltz, J., & Galotto, M. (2011). The antimicrobial activity of microencapsulated thymol and carvacol. International Journal of Food Microbiology, 146(2), 144e150. Hosseini, S., Rezaei, M., Zandi, M., & Ghavi, F. (2013). Preparation and functional properties of fish gelatinechitosan blend edible films. Food Chemistry, 136(3e4), 1490e1495. Jia, D., Fang, Y., & Yao, K. (2009). Water vapor barrier and mechanical properties of konjac glucomannan-chitosan-soy protein isolate edible films. Food and Bioproducts Processing, 87, 7e10. Khan, M. S., Fon, D., Li, X., Tian, J., Forsythe, J., Garnier, G., et al. (2010). Biosurface engineering through ink jet printing. Colloids and Surfaces B: Biointerfaces, 75(2), 441e447. Khan, T. A., Peh, K. K., & Chang, H. S. (2000). Mechanical, bioadhesive strength and biological evaluations of chitosan films for wound dressing. Journal of Pharmaceutical Sciences, 3(3), 303e311. Khoee, S., Sattari, A., & Atyabi, F. (2012). Physico-chemical properties investigation of cisplatin loaded polybutyladipate (PBA) nanoparticles prepared by w/o/w. Materials Science and Engineering C, 32(5), 1078e1086. Kipphan, H. (2001). Handbook of print media: Technologies and production methods (pp. 137e141). Springer Science & Business Media. Kong, M., Chen, X., Xing, K., & Park, H. J. (2010). Antimicrobial properties of chitosan and mode of action: a state of the art review. International Journal of Food Microbiology, 144, 51e63. Kurek, M., Brachais, C.-H., Nguimjeu, C., Bonnotte, A., Voilley, A., Galic, K., et al. (2012). Structure and thermal properties of a chitosan coated polyethylene bilayer film. Polymer Degradation and Stability, 97(8), 1232e1240. Kurek, M., Galus, S., & Debeaufor, F. (2014). Surface, mechanical and barrier properties of bio-based composite films based on chitosan and whey protein. Food Packaging and Shelf Life, 1, 56e67. Kwok, D. Y., & Neumann, A. W. (1999). Contact angle measurement and contact angle interpretation. Advances in Colloid and Interface Science, 81(3), 167e249. Lavertu, M., Xia, Z., Serreqi, A. N., Berrada, M., Rodrigues, A., Wang, D., et al. (2003). A validated 1H NMR method for the determination of the degree of deacetylation of chitosan. Journal of Pharmaceutical and Biomedical Analysis, 32(6), 1149e1158. Lopez-Leon, T., Ortega-Vinuesa, J., Bastos-Gonzalez, D., & Elaissari, A. (2014). Thermally sensitive reversible microgels formed by poly(N-Isopropylacrylamide) charged chains: a Hofmeister effect study. Journal of Colloid and Interface Science, 426, 300e307. Majeti, N., & Kumar, R. (2000). A review: chitin and chitosan applications. Reactive and Functional Polymers, 46(1), 1e27. McHugh, T. H., Avena-Bustillos, R., & Krochta, J. M. (1993). Hydrophilic edible films: modified procedure for water vapor permeability and explanation of thickness effects. Journal of Food Science, 58(4), 899e903. Melendez, P., Kane, K., Ashvar, C., Albrecht, M., & Smith, P. (2008). Thermal inkjet application in the preparation of oral dosage forms: dispensing of prednisolone solutions and polymorphic characterization by solid-state spectroscopic techniques. Journal of Pharmaceutical Sciences, 97(7), 2619e2636. Müller, R. H., Jacobs, C., & Kayser, O. (2001). Nanosuspensions as particulate drug formulations in therapy rationale for development and what we can expect for the future. Advanced Drug Delivery Reviews, 47, 3e19. Muzzarelli, R. (1977). Chitin (p. 326). Oxford: Pergamon Press. National Committee for Clinical Laboratory Standards. (1990). Performance standards for antimicrobial disk susceptibility tests. Approved standard M2eA4, forth ed., Villanova, Pa. NCh1151.Of1976. (1999). Laminas y películas plasticas e Determinacion de las propiedades de traccion. NORMA CHILENA OFICIAL (p. 13). NCh2098.Of2000. (2000). Películas de recubrimiento organico e Determinacion de la transmision de vapor de agua. NORMA CHILENA OFICIAL (p. 13). Nelson, D., & Cox, M. (2006). Lehninger principles of biochemistry (4th ed., pp. 75e81). New York: Freeman and Company. Olsson, E., Johansson, C., & J€arnstr€om, L. (2014). Montmorillonite for starch-based barrier dispersion coatingdPart 1: the influence of citric acid and poly(- ethylene glycol) on viscosity and barrier properties. Applied Clay Science, 97e98, 160e166. Pan, K., Chen, H., Davidson, M., & Zhong, Q. (2014). Thymol nanoencapsulated by sodium caseinate: Physical and antilisterial properties. Journal of Agricultural and Food Chemistry, 62(7), 1649e1657. Pardeike, J., Strohmeier, D., Schr€odl, N., Voura, C., Gruber, M., Khinast, J., et al. (2011). Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. International Journal of Pharmaceutics, 420, 93e100. Paseiro-Losada, P., Simal Lozano, J., Abuín, S., Lopez Mahía, P., & Simal Gandara, J. (1993). Kinetics of the hydrolysis of bisphenol A diglycidyl ether (BADGE) in water based food simulants. Implications for legislation on the migration on BADGE-type epoxy resins into foodstuffs. Fresenius' Journal of Analytical Chemistry, 345, 527e532. Pereda, M., Amica, G., & Marcovich, N. (2012). Development and characterization of edible chitosan/olive oil emulsion films. Carbohydrate Polymers, 87(2), 1318e1325. Pereda, M., Aranguren, M., & Marcovich, N. (2008). Characterization of chitosan/ caseinate films. Journal of Applied Polymer Science, 107(2), 1080e1090. Perez-Gago, M., & Krochta, J. (2001). Lipid particle size effect on water vapor permeability and mechanical properties of whey protein/beeswax emulsion films. Journal of Agricultural Food Chemistry, 49(2), 996e1002. Philo, M., Fordham, P., Damant, A., & Castle, L. (1997). Measurement of styrene oxide in polystyrenes, estimation of migration to foods, and reaction kinetics and products in food simulants. Food and Chemical Toxicology, 35(8), 821e826. Qiu, M., Jiang, H., Ren, G., Huang, J., &Wang, X. (2012). Effect of chitosan coatings on postharvest green asparagus quality. Carbohydrate Polymers, 92(2), 2027e2032. Rabea, E., Badawy, M., Stevens, C., Smagghe, G., & Steurbaut, W. (2003). Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 4(6),1458e1465. Ramos, M., Jimenez, A., Peltzer, M., & Garrigos, C. (2012). Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. Journal of Food Engineering, 109(3), 513e519. Rinaudo, M., Milas, M., & Le Dung, P. (1993). Characterization of chitosan. Influence of ionic strength and degree of acetylation on chain expansion. International Journal of Biological Macromolecules, 15(5), 281e285. Rivero, S., García, M. A., & Pinotti, A. (2009). Composite and bi-layer films based on gelatin and chitosan. Journal of Food Engineering, 90(4), 531e539. Scoutaris, N., Alexander, M. R., Gellert, P. R., & Roberts, C. J. (2011). Inkjet printing as a novel medicine formulation technique. Journal of Controlled Release, 156(2), 179e185. Shi, A.-M., Wang, L.-J., Li, D., & Adhikari, B. (2013). Characterization of starch films containing starch nanoparticles Part 1: physical and mechanical properties. Carbohydrate Polymers, 96(2), 593e601. Sorrentino, A., Gorrasi, G., & Vittoria, V. (2007). Potential perspectives of bionanocomposites for food packaging applications. Trends in Food Science & Technology, 18(2), 84e95. Tapia, C., Montezuma, V., & Yazdani-Pedram, M. (2008). Microencapsulation by spray coagulation of diltiazem HCl in calcium alginate-coated chitosan. AAPS PharmSciTech, 9, 1198e1206. Torres, M., Aimoli, C., Beppu, M., & Frejlich, J. (2005). Chitosan membrane with patterned surface obtained through solution drying. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 268(1e3), 175e179. Tripathi, P., & Dubey, N. K. (2004). Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biology and Technology, 32(3), 235e245. Valenzuela, C., Abugoch, L., & Tapia, C. (2013). Quinoa protein-chitosan-sunflower oil edible film: mechanical, barrier and structural properties. LWT e Food Science and Technology, 50(2), 531e537. Vargas, M., Albors, A., Chiralt, A., & Gonzalez-Martínez, C. (2009). Characterization of chitosan-oleic acid composite films. Food Hydrocolloids, 23(2), 536e547. Wazed Ali, S., Rajendran, S., & Joshi, M. (2011). Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydrate Polymers, 83(2), 438e446. Wiles, J. L., Vergano, P. J., Barron, F. H., Bunn, J. M., & Testin, R. F. (2000).Water vapor transmission rates and sorption behavior of chitosan films. Journal of Food Science, 65(7), 1175e1179. Yamaguchi, I., Iizuka, S., Osaka, A., Monma, H., & Tanaka, J. (2003). The effect of citric acid addition on chitosan/hydroxyapatite composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 214(1e3), 111e118. Yixiang, X., Xi, R., & Milford, A. H. (2006). Chitosan/clay nanocomposite film preparation and characterization. Journal of Applied Polymer Science, 99(4), 1684e1691. Yoksan, R., & Chirachanchai, S. (2010). Silver nanoparticle-loaded chitosanestarch based films: fabrication and evaluation of tensile, barrier and antimicrobial properties. Materials Science and Engineering C, 30, 891e897. Zhong, Y., Song, X., & Li, Y. (2011). Antimicrobial, physical and mechanical properties of kudzu starchechitosan composite films as a function of acid solvent types. Carbohydrate Polymers, 84(1), 335e342.




采用殼聚糖-三聚磷酸酯-百里香納米顆粒經(jīng)熱噴墨打印而成的新型活性包裝材料——摘要、簡(jiǎn)介

采用殼聚糖-三聚磷酸酯-百里香納米顆粒經(jīng)熱噴墨打印而成的新型活性包裝材料——材料和方法

采用殼聚糖-三聚磷酸酯-百里香納米顆粒經(jīng)熱噴墨打印而成的新型活性包裝材料——結(jié)果與討論

采用殼聚糖-三聚磷酸酯-百里香納米顆粒經(jīng)熱噴墨打印而成的新型活性包裝材料——結(jié)論、致謝!

免费看黄色91| 色综久久综合桃花网| av动漫一区二区| 国产成人亚洲综合a∨婷婷图片| 久久精品官网| 久久尤物视频| 毛片基地黄久久久久久天堂| 精品在线一区二区| 9久草视频在线视频精品| 国产ts人妖一区二区| 99久久久无码国产精品| 久久综合色婷婷| 国产精品国产自产拍高清av王其| 亚洲欧洲成人av每日更新| 一区二区三区 在线观看视频| 性做久久久久久久免费看| 欧美一a一片一级一片| 日韩午夜激情视频| 国产一区二区三区三区在线观看| 久久精品电影一区二区| 668精品在线视频| 爆操欧美孕妇| 中文字幕在线观看第一页| 91网页在线观看| 午夜影院一区| 国产在线播放精品| 欧美黄色aaaa| 国产麻豆精品theporn| 亚洲国产精品国自产拍av| 亚洲国产一二三| 欧美老女人第四色| 国产亚洲a∨片在线观看| 欧美黄网免费在线观看| 成色在线视频| 自拍亚洲图区| 超碰地址久久| 欧美日韩四区| 成人免费毛片app| 亚洲激情第一区| 日韩免费一区二区| 欧美国产日韩二区| 日韩黄色网址| 偷拍自拍在线看| 偷拍一区二区| 日韩国产高清在线| 久久久不卡网国产精品二区| 岛国精品视频在线播放| 日韩精品在线视频美女| 国产成人精品日本亚洲专区61| 日韩三级电影网| 国产在线|日韩| 日韩一区二区在线免费| 极品尤物av久久免费看| 亚洲国产日韩a在线播放性色| 亚洲第一国产精品| 国产精品视频免费在线| 羞羞的视频在线看| 最近国产精品视频| 国产美女视频一区| 欧美性xxxx极品hd满灌| xxxxx91麻豆| 日韩亚洲视频在线观看| 日韩欧洲国产| 日韩电影在线观看网站| 亚洲资源在线观看| 中文字幕av一区| 在线观看免费观看在线91| 欧美aa视频| 夜夜夜久久久| 一区二区三区在线视频观看 | 亚洲成人网av| 国产精品亚洲美女av网站| 久久久123| 亚洲天堂免费| 最新不卡av在线| 日韩一中文字幕| 一区二区三区视频在线观看视频| 欧美wwwsss9999| 成人aa视频在线观看| 日韩欧美123| av女同在线| 国产香蕉精品| 不卡av在线网| 亚洲精品按摩视频| 又黄又爽在线免费观看| 成人性生交大片免费看96| 国产成人精品三级| 亚洲国产精品999| 偷拍25位美女撒尿视频在线观看| 精品三级av在线导航| 99久久99久久久精品齐齐| 亚洲精品动漫久久久久| 高清日韩av电影| 天天影视天天精品| 亚洲国产一区视频| 欧美自拍大量在线观看| www.一区| 成人国产精品免费观看动漫| 国产视频精品免费播放| 午夜激情视频在线观看| 亚洲视频碰碰| 欧美日韩视频一区二区| 国产精品精华液网站| 九九热爱视频精品视频| 亚洲欧洲av在线| 奇米一区二区三区四区久久| 大胆国模一区二区三区| 2024国产精品视频| 久久国产精品免费视频| 国产精品13p| 精品一区二区三区在线播放视频 | 日韩精品一区二区三区在线播放| 污视频网站在线看| 国产毛片一区二区三区| 一区二区高清视频在线观看| 国产精品成人免费视频| 国产精品tv| 亚洲精品欧美综合四区| 国产精品精品国产| 欧美男男gaytwinkfreevideos| 一区二区在线观看视频| 大陆一级毛片| 日韩电影免费在线观看| 色婷婷综合久色| 久艹在线视频| 欧美三级视频| 亚洲第一级黄色片| 国精一区二区三区| 成人网男人的天堂| 久久久久久成人精品| 最新国产一区二区| 亚洲国产日日夜夜| 亚洲成人av在线影院| 亚洲永久字幕| 国产一区二区三区视频在线观看| 成人性生活av| 中文天堂在线一区| 91佛爷在线| 亚洲精品少妇| 亚洲一区二区久久久| 国产黄色精品| 亚洲v精品v日韩v欧美v专区| 四虎影视精品成人| 韩国理伦片一区二区三区在线播放| www.午夜精品| 国产三级精品三级在线观看国产| 精品国产精品自拍| 亚洲成人影院麻豆| 成人激情小说网站| 国产精品一香蕉国产线看观看| 亚洲91中文字幕无线码三区| 精品久久久久久综合日本欧美 | 在线免费观看黄色av| 国产一区二区三区四区五区入口| 欧美日韩国产123| 欧美美女黄色| 欧美一三区三区四区免费在线看| 久草在线视频网站| 国产精品久久久久国产精品日日| 日本一二三区视频免费高清| 久久精品毛片| 91精品国产99久久久久久| 天天做天天爱天天综合网2021| 精品国产一区二区三区四区四| 456成人影院在线观看| 亚洲精品视频一区二区| av影片在线看| 国产欧美日本一区二区三区| 蜜芽视频在线观看| 国产精品亚洲成人| caoliu在线| 国产一区高清在线| 国产一区二区在线免费视频| 久久久久久久尹人综合网亚洲| 欧美激情区在线播放| 综合国产在线| 久久久久久高潮国产精品视| 国产精品第十页| 欧美日韩高清在线观看| 欧美日韩hd| 91a在线视频| 三级欧美在线一区| 成人激情视频在线播放| 国产曰批免费观看久久久| 黄色片av在线| 国产成人av电影在线播放| 在线观看视频免费| 91蜜桃免费观看视频| 神马精品久久| 国产精品久久久久久久久动漫| www.91在线| 亚洲狠狠丁香婷婷综合久久久| 在线观看a级片| 五月天国产精品| 一区在线影院| 精品国产区一区| 久久要要av| 日本久久久久久久| 国产成人在线免费| 福利视频在线看|